// Display mode mode(0); // Display warning for floating point exception ieee(1); clear; clc; disp("Engineering Thermodynamics by Onkar Singh Chapter 8 Example 9") P=15*10^3;//turbine output in KW disp("At inlet to first turbine stage,h2=3230.9 KJ/kg,s2=6.9212 KJ/kg K") h2=3230.9; s2=6.9212; disp("For ideal expansion process,s2=s3") s3=s2; disp("By interpolation,T3=190.97 degree celcius from superheated steam tables at 6 bar,h3=2829.63 KJ/kg") T3=190.97; h3=2829.63; disp("actual stste at exit of first stage,h3_a=h2-0.8*(h2-h3) in KJ/kg") h3_a=h2-0.8*(h2-h3) disp("actual state 3_a shall be at 232.78 degree celcius,6 bar,so s3_a=7.1075 KJ/kg K") s3_a=7.1075; disp("for second stage,s3_a=s4;By interpolation,s4=7.1075=sf at 1 bar+x4*sfg at 1 bar") s4=7.1075; disp("from steam tables,at 1 bar,sf=1.3026 KJ/kg K,sfg=6.0568 KJ/kg K") sf=1.3026; sfg=6.0568; disp("so x4=(s4-sf)/sfg") x4=(s4-sf)/sfg x4=0.958;//approx. disp("h4=hf at 1 bar+x4*hfg at 1 bar in KJ/kg") disp("from steam tables,at 1 bar,hf=417.46 KJ/kg,hfg=2258.0 KJ/kg") hf=417.46; hfg=2258.0; h4=hf+x4*hfg disp("actual enthalpy at exit from second stage,h4_a=h3_a-.8*(h3_a-h4) in KJ/kg") h4_a=h3_a-.8*(h3_a-h4) disp("actual dryness fraction,x4_a=>h4_a=hf at 1 bar+x4_a*hfg at 1 bar") disp("so x4_a=(h4_a-hf)/hfg") x4_a=(h4_a-hf)/hfg disp("x4_a=0.987,actual entropy,s4_a=7.2806 KJ/kg K") s4_a=7.2806; disp("for third stage,s4_a=7.2806=sf at 0.075 bar+x5*sfg at 0.075 bar") disp("from steam tables,at 0.075 bar,sf=0.5764 KJ/kg K,sfg=7.6750 KJ/kg K") sf=0.5764; sfg=7.6750; disp("so x5=(s4_a-sf)/sfg") x5=(s4_a-sf)/sfg x5=0.8735;//approx. disp("h5=2270.43 KJ/kg") h5=2270.43; disp("actual enthalpy at exit from third stage,h5_a=h4_a-0.8*(h4_a-h5)in KJ/kg") h5_a=h4_a-0.8*(h4_a-h5) disp("Let mass of steam bled out be m1 and m2 kg at 6 bar,1 bar respectively.") disp("By heat balance on first closed feed water heater,(see schematic arrangement)") disp("h11=hf at 6 bar=670.56 KJ") h11=670.56; disp("m1*h3_a+h10=m1*h11+4.18*150") disp("(m1*2829.63)+h10=(m1*670.56)+627") disp("h10+2159.07*m1=627") disp("By heat balance on second closed feed water heater,(see schematic arrangement)") disp("h7=hf at 1 bar=417.46 KJ/kg") h7=417.46; disp("m2*h4+(1-m1-m2)*4.18*38=(m1+m2)*h7+4.18*95*(1-m1-m2)") disp("m2*2646.4+(1-m1-m2)*158.84=((m1+m2)*417.46)+(397.1*(1-m1-m2))") disp("m2*2467.27-m1*179.2-238.26=0") disp("heat balance at point of mixing,") disp("h10=(m1+m2)*h8+(1-m1-m2)*4.18*95") disp("neglecting pump work,h7=h8") disp("h10=m2*417.46+(1-m1-m2)*397.1") disp("substituting h10 and solving we get,m1=0.1293 kg and m2=0.1059 kg/kg of steam generated") m1=0.1293; m2=0.1059; disp("Turbine output per kg of steam generated,Wt=(h2-h3_a)+(1-m1)*(h3_a-h4_a)+(1-m1-m2)*(h4_a-h5_a)in KJ/kg of steam generated") Wt=(h2-h3_a)+(1-m1)*(h3_a-h4_a)+(1-m1-m2)*(h4_a-h5_a) disp("Rate of steam generation required=P/Wt in kg/s") P/Wt disp("in kg/hr") P*3600/Wt disp("capacity of drain pump i.e. FP shown in layout=(m1+m2)*69192 in kg/hr") (m1+m2)*69192 disp("so capacity of drain pump=16273.96 kg/hr")