// Display mode mode(0); // Display warning for floating point exception ieee(1); clear; clc; disp("Engineering Thermodynamics by Onkar Singh Chapter 7 Example 3") m=15;//steam flow rate in kg/s V2=160;//exit velocity of steam in m/s To=(15+273);//pond water temperature in K disp("inlet conditions,") disp("from steam tables,,h1=3051.2 KJ/kg,s1=7.1229 KJ/kg K") h1=3051.2; s1=7.1229; disp("outlet conditions,at 0.05 bar and 0.95 dryness fraction") disp("from steam tables,sf=0.4764 KJ/kg K,s_fg=7.9187 KJ/kg K,x=0.95,hf=137.82 KJ/kg,h_fg=2423.7 KJ/kg") sf=0.4764; s_fg=7.9187; x=0.95; hf=137.82; h_fg=2423.7; disp("so s2=sf+x*s_fg in KJ/kg K") s2=sf+x*s_fg disp("and h2=hf+x*h_fg in KJ/kg") h2=hf+x*h_fg disp("neglecting the change in potential energy and velocity at inlet to turbine,the steady flow energy equation may be written as to give work output.") disp("w=(h1-h2)-V2^2*10^-3/2 in KJ/kg") w=(h1-h2)-V2^2*10^-3/2 disp("power output=m*w in KW") m*w disp("maximum work for given end states,") disp("w_max=(h1-To*s1)-(h2+V2^2*10^-3/2-To*s2) in KJ/kg") w_max=(h1-To*s1)-(h2+V2^2*10^-3/2-To*s2) w_max=850.38;//approx. disp("w_max in KW") w_max=m*w_max disp("so maximum power output=12755.7 KW") disp("maximum power that could be obtained from exhaust steam shall depend upon availability with exhaust steam and the dead state.stream availability of exhaust steam,") disp("A_exhaust=(h2+V^2/2-To*s2)-(ho-To*so)") disp("=(h2-ho)+V2^2/2-To(s2-so)") disp("approximately the enthalpy of water at dead state of 1 bar,15 degree celcius can be approximated to saturated liquid at 15 degree celcius") disp("from steam tables,at 15 degree celcius,ho=62.99 KJ/kg,so=0.2245 KJ/kg K") ho=62.99; so=0.2245; disp("maximum work available from exhaust steam,A_exhaust in KJ/kg") disp("A_exhaust=(h2-ho)+V2^2*10^-3/2-To*(s2-so)") A_exhaust=(h2-ho)+V2^2*10^-3/2-To*(s2-so) A_exhaust=151.1;//approx. disp("maximum power that could be obtained from exhaust steam=m*A_exhaust in KW") m*A_exhaust disp("so maximum power from exhaust steam=2266.5 KW")