// Display mode mode(0); // Display warning for floating point exception ieee(1); clear; clc; disp("Engineering Thermodynamics by Onkar Singh Chapter 10 Example 10") m=4;//mass of fuel consumed in kg N=1500;//engine rpm mw=15;//water circulation rate in kg/min T1=27;//cooling water inlet temperature in degree celcius T2=50;//cooling water outlet temperature in degree celcius ma=150;//mass of air consumed in kg T_exhaust=400;//exhaust temperature in degree celcius T_atm=27;//atmospheric temperature in degree celcius Cg=1.25;//mean specific heat of exhaust gases in KJ/kg K n_mech=0.9;//mechanical efficiency T=300*10^-3;//brake torque in N C=42*10^3;//calorific value in KJ/kg Cw=4.18;//specific heat of water in KJ/kg K disp("brake power(BP)=2*%pi*N*T in KW") BP=2*%pi*N*T/60 disp("so brake power=47.124 KW") disp("brake specific fuel consumption(bsfc)=m*60/(mw*BP) in kg/KW hr") bsfc=m*60/(mw*BP) disp("indicated power(IP)=BP/n_mech in Kw") IP=BP/n_mech disp("indicated thermal efficiency(n_ite)=IP*mw*60/(m*C)") n_ite=IP*mw*60/(m*C) disp("in percentage") n_ite=n_ite*100 disp("so indicated thermal efficiency=28.05%") disp("heat available from fuel(Qf)=(m/mw)*C in KJ/min") Qf=(m/mw)*C disp("energy consumed as brake power(BP)=BP*60 in KJ/min") BP=BP*60 disp("energy carried by cooling water(Qw)=mw*Cw*(T2-T1)in KJ/min") Qw=mw*Cw*(T2-T1) disp("energy carried by exhaust gases(Qg)=(ma+m)*Qg*(T_exhaust-T_atm)/mw in KJ/min") Qg=(ma+m)*Cg*(T_exhaust-T_atm)/mw disp("unaccounted energy loss in KJ/min") Qf-(BP+Qw+Qg) disp("NOTE=>Heat balance sheet on per minute basis is attached as jpg file with this code.")