// Scilab Code Ex6.15: Page-229 (2014) clc; clear; h = 6.62e-034; // Planck's constant, Js h_bar = h/(2*%pi); // Reduced Planck's constant, Js c = 3.00e+008; // Speed of light, m/s e = 1.602e-019; // Energy equivalent of 1 eV, J m = 0.511e+006; // Energy equivalent of electron rest mass, eV V0 = 10; // Height of potential barrier, eV Sum_M = 0; i = 1; for E = 5:-1:1 // Range of energies of the incident electrons, eV M = 16*E/V0*(1-E/V0); // All the factors multiplying the exponential term Sum_M = Sum_M + M; // Accumulator i = i + 1; end E = 5; // Given energy of the incident electrons, eV M = int(Sum_M/i); // Avearge value of M L = 0.8e-009; // Width of the potential barrier, m k = sqrt(2*m*(V0 - E))*e/(h_bar*c); // Schrodinger's constant, per m T = M*exp(-2*k*L); // Transmission electron probability printf("\nThe fraction of electrons tunneled through the barrier = %3.1e", T); // Result // The fraction of electrons tunneled through the barrier = 2.2e-008