// Scilab Code Ex12.2: Page-436 (2014) clc; clear; c = 3.00e+008; // Speed of light, m/s e = 1.602e-019; // Energy equivalent of 1 eV, J m_e = 0.511; // Rest mass energy of electron, MeV m_p = 938.3; // Rest mass energy of proton, MeV h = 6.62e-034; // Planck's constant, Js A = 40; // Mass number of Ca-40 r0 = 1.2; // Nuclear radius constant, fm R = r0*A^(1/3); // Radius of Ca-40 nucleus, fm printf("\nThe radius of Ca-40 nucleus = %3.1f fm", R); lambda = 2.0; // de-Broglie wavelength to distinguish a distance at least half the radius, fm // Electron energy E = ceil(sqrt(m_e^2+(h*c/(lambda*e*1e+006*1e-015))^2)); // Total energy of the probing electron, MeV K = E - m_e; // Kinetic energy of probing electron, MeV printf("\nThe kinetic energy of probing electron = %3d MeV", ceil(K)); // Proton energy E = ceil(sqrt(m_p^2+(h*c/(lambda*e*1e+006*1e-015))^2)); // Total energy of the probing electron, MeV K = E - m_p; // Kinetic energy of probing electron, MeV printf("\nThe kinetic energy of probing proton = %3d MeV", ceil(K)); // Result //The radius of Ca-40 nucleus = 4.1 fm // The kinetic energy of probing electron = 620 MeV // The kinetic energy of probing proton = 187 MeV // The answers are deviated due to the approximations used in the textbook