clc apsilen = 11.9*8.85*10^-12 disp("apsilen = "+string(apsilen)+"F/m") //initializing value of relative permitivity Nd = 10^16 disp("Nd = "+string(Nd)+"cm^-3") //initializing value of diode doping Nc = 2.8*10^19 disp("Nc = "+string(Nd)+"cm^-3") //initializing value of channel doping kBT = 0.026 disp("kBT = "+string(kBT)+"eV") //initializing value of multiplication of boltzmann constant and 300K temperature I=10*10^-3 disp("I = "+string(I)+"A") //initializing value of forward bias current e = 1.6*10^-19 disp("e= "+string(e)+"C")//initializing value of charge of electron A= 10^-3 disp("A= "+string(A)+"cm^2") //initializing value of area disp(" for W-n type Si schottky barrier ") T = 300 disp("T= "+string(T)+"K")//initializing value of temperature phi_b = 0.67 disp("schottky barrier heights(in volts) =phi_b= "+string(phi_b)+"eV")//initializing value of schottky barrier heights(in volts) R = 110 disp("R* = "+string(R)+"Acm^-2K^-1") //initializing value of effective richardson constant Is = A*R*(T^2)*(exp(-(phi_b)/(kBT))) disp("The reverse saturation current is ,Is = A*R*(T^2)*(exp(-(Qb/kbT))) = "+string(Is)+"A")//calculation V = kBT*(log(I/Is)) disp("The applied bias for schottky diode corresponding to 10mA forward current is,V = kBT*(log(I/Is))= "+string(V)+"V")//calculation E = kBT*log(Nc/Nd) disp("The fermi level positionin the neutral semiconductor(Efs) with respect to the conduction band is,Ec-Efs= E = kBT*log(Nc/Nd)= "+string(E)+" eV")//calculation Vbi= phi_b-(E) disp("The built in voltage is ,Vbi= phi_b-((1/e)*E)= "+string(Vbi)+"V")//calculation Cd = A*sqrt((e*Nd*apsilen)/(2*(Vbi-V))) disp("The diode capacitance is ,Cd = A*sqrt((e*Nd*apsilen)/(2*(Vbi-V))) = "+string(Cd)+"F")//calculation R = kBT/I disp("The resistance is ,R = kBT/I = "+string(R)+"ohm")//calculation RC = R*Cd disp("The RC time constant is ,RC(schottky) = R*Cd = "+string(RC)+"s")//calculation disp(" for Si p+ -n junction diode ") Tb = 10^-6 disp("Tb= "+string(Tb)+"s")//inializing value of electron lifetime disp("In the p-n diode the junction capacitance and the small signal resistance will be same as those in the schottky diode") Cdiff = ((I*Tb)/(kBT)) disp("The diffusion capacitance is ,Cdiff = (I*Tb)/(kBT) = "+string(Cdiff)+"F")//calculation RC1 = R*Cdiff disp("The RC time constant is ,RC(p-n) = R*Cdiff = "+string(RC1)+"s")//calculation disp("From the above RC time constant value it can be concluded that p-n diode is almost 1000 times slower") // Note: due to approximation, the value of diode capicitance and diffusion capacitance are differ from that of the textbook