// ELECTRICAL MACHINES // R.K.Srivastava // First Impression 2011 // CENGAGE LEARNING INDIA PVT. LTD // CHAPTER : 2 : FORCES IN AN ELECTROMAGNETIC SYSTEMS // EXAMPLE : 2.4 clear ; clc ; close ; // Clear the work space and console // GIVEN DATA // Refer figure 2.7:- Page no. 41 a = 0.0001; // Cross Sectional Area of the Core in Meter-Square Li = 0.158; // Total length of the Path abcdef in Meter (4.0*4.0 - 0.2 = 15.8cm = 0.158m) Lg = 0.002; // Length of the air gap in Meter mue_0 = 4*%pi*10^-7; // Permeability of the air in Henry/Meter mue_r = 10000; // Permeability of the core N = 10; // Number of Turns I = 1.0; // Current in the Coil in Amphere v = 50; // hall effect sensor generates volatge produces in milli volt per 1 Telsa Li_new = 0.16; // Length of the Flux path in Absence of the Air gap in Meter // CALCUALTIONS F = N*I; // MMF of the Coil in Amphere-turn Ri = Li/(mue_0*mue_r*a); // Relucatnce of the Iron Coil in MKS unit Rg = Lg/(mue_0*a); // Relucatnce of air gap in MKS unit R = Ri+Rg; // Total Reluctance in MKS unit phi = F/R; // Flux in the Core in Weber B = phi/a; // FLux density in the core(Presence of the Air gap) in Weber/Meter-Square HEV = B*50; // Output of the Hall effect Sensor device in Milli-Volt R_new = Li_new/(mue_0*mue_r*a) // Relucatance of the Magnetic Circuit in Absence of the Air gap phi_new = F/R_new; // New Flux in the Core in Weber B_new = phi_new/a; // New FLux density in the core in Weber/Meter-Square Ratio = B_new/B; // Ratio of the Flux Density in Absence of the Air gap and in the presence of the Air gap // DISPLAY RESULTS disp("EXAMPLE : 2.4 : SOLUTION :-") ; printf("\n (a) Flux density in the core(Presence of the Air gap) , B = %.8f Wb/Meter-Square \n ",B); printf("\n (b) Output of the Hall effect Sensor device , HEV = %.7f mV \n",HEV); printf("\n (c) Ratio of the Flux Density in Absence of the Air gap and in the presence of the Air gap , Ratio = %.2f \n ",Ratio);