clc clear // solution //initialization of variables // for rankine cycle refer to fig 6.9 effiT=0.8 // turbine efficiency P2=2*1000 // higher pressure converted in kPa P1=10 // lower pressure in kPa h1=192 // enthalpy at 10 kPa in kJ/kg h3=3690 // enthalpy of superheated steam @ 2 MPa from steam table in kJ/kg s3=7.702 //entropy of superheated steam @ 2 MPa from steam table in kJ/kg.K // state 4' is repsresented by '41' h2=h1 //isenthalpic process s41=s3 // entropy is constant sf=0.6491 // entropy of saturated liquid @10 kPa from steam table sg=8.151 // entropy of saturated vapour @10 kPa from steam table x=(s41-sf)/(sg-sf)// from property of pure substance hf=191.8 //enthalpy of saturated liquid @10 kPa from steam table hg=2584 // enthalpy of saturated vapour @10 kPa from steam table h41=hf+x*(hg-hf)// enthalpy @ state 41 wa=effiT*(h3-h41)// turbine efficiency =(actual work)/(isentropic work) qb=h3-h2 // heat supplied effi=(wa)/qb // efficiency of power cycle printf(" The Efficiency is %.3f or %.1f %% \n",effi,effi*100) h4=h3-wa // adiabatic process // now using interpolation for superheated steam @ 10 kPa T4=(h4-2688)*(150-100)/(2783-2688)+100 printf("\n The Temperature from interpolation comes out to be %i degree celsius",T4)