//Transport Processes and Seperation Process Principles //Chapter 3 //Example 3.2-1 //Principles of Momentum Transfer and Applications //given data rho=1.043;//density of air at 328.5K in kg/m3 v=23;//velocity of air in m/s D=0.6;//diameter of a cylinder mu=2.03/100000;//viscosity of air Pa.s delh=0.205;// 0.205m of water pitot tube reading rhow=1000;//density of water delP=delh*(rhow-rho)*9.80665;//pressure diff and g=9.80655 m/s2 patm=101325;//atm pressure in pascals p1=patm+0.02008*100000;//absolute pressure+ pressure diff rhoc=(p1/patm)*1.043;//corrected air density delH=10.7/1000;//manometer reading, m of water Cp=0.98; delP=delH*(rhow-rhoc)*9.80655;//pressure diff in Pa v=Cp*((2*delP)/rhoc)^0.5;//max vel at center Re=D*v*rhoc/mu;//Reynolds Number vr=0.85;//from the given graph the ratio of avg vel/max vel is 0.85 vavg=vr*v;//the average velcity in m/s mprintf(" average velcity = %f m/s",vavg) A=(3.14/4)*(D*D);//cross sec area in m2 V=A*vavg;//volumetric flow rate in m3/s mprintf("volumetric flow rate = %f m3/s",V)