clear; clc; d = 9;// inches p = 5000/2240;// lb/in^2 f = 8;// tons/in^2 PR = 0.3;// Poisson's ratio //(i) Maximum principal stress hypothesis: k_limit1 = sqrt((f + p)/(f - p));//k_limit = r1/r2 r_limit1 = k_limit1*0.5*d;//inches printf('The outer radius in case(i), r2 = %.3f inches',r_limit1); //(ii) Maximum principal strain: k_limit2 = sqrt(((f/p - PR)+1)/(f/p - PR -1)); r_limit2 = k_limit2*0.5*d;// inches printf('\n The outer radius in case(ii), r2 = %.3f inches',r_limit2); //(iii) Maximum shear stress: k_limit3 = sqrt(f/(2*p) /((f/(2*p)) - 1)); r_limit3 = k_limit3*0.5*d;// inches printf('\n The outer radius in case(iii), r2 = %.3f inches',r_limit3); //(iv) Maximum strain energy K1 = (f^2 /p^2)/(2*((f^2 /(2*p^2)) - (1+PR))); K2 = K1^2; K3 = ((f^2 /(2*p^2)) - (1-PR))/((f^2 /(2*p^2)) - (1+PR)); k_limit4 = sqrt(K1+sqrt(K2-K3)); r_limit4 = k_limit4*0.5*d;// inches printf('\n The outer radius in case(iv), r2 = %.3f inches',r_limit4); //there are calculation errors in the answer given in text book