clear; clc; disp('Example 8.14'); // aim : To determine // (a) the mass of fuel used per cycle // (b) the actual mass of air taken in per cycle // (c) the volume of air taken in per cycle // given values W = 15;// work done, [kJ/s] N = 5;// speed, [rev/s] C = .84;// mass composition of carbon H = .16;// mass composition of hydrogen ea = 1;// percentage excess air supplied CV = 45000;// calorificvalue of fuel, [kJ/kg] n_the = .3;// thermal efficiency P = 100;// pressuer, [kN/m^2] T = 273+15;// temperature, [K] R = .29;// gas constant, [kJ/kg K] // solution // (a) E = W*2/N/n_the;// energy supplied, [kJ/cycle] mf = E/CV;// mass of fuell used, [kg] mprintf('\n (a) Mass of fuel used per cycle is = %f g\n',mf*10^3); // (b) // basis 1 kg fuel mO2 = C*8/3+8*H;// mass of O2 requirea, [kg] smO2 = mO2/.23;// stoichiometric mass of air, [kg] ma = smO2*(1+ea);// actual mass of air supplied, [kg] m = ma*mf;// mass of air supplied, [kg/cycle] mprintf('\n (b) The mass of air supplied per cycle is = %f kg\n',m); // (c) V = m*R*T/P;// volume of air, [m^3] mprintf('\n (c) The volume of air taken in per cycle is = %f m^3\n',V); // End