clear; clc; disp('Example 5.23'); // aim : T determine the // (a) characteristic gas constant of the gas // (b) cp, // (c) cv, // (d) del_u // (e) work transfer // Given values P = 1;// [bar] T1 = 273+15;// [K] m = .9;// [kg] T2 = 273+250;// [K] Q = 175;// heat transfer,[kJ] // solution // (a) // using, P*V=m*R*T, given, m_by_V = 1.875; // hence R = P*100/(T1*m_by_V);// [kJ/kg*K] mprintf('\n (a) The characteristic gas constant of the gas is R = %f kJ/kg K\n',R); // (b) // using, Q=m*cp*(T2-T1) cp = Q/(m*(T2-T1));// [kJ/kg K] mprintf('\n (b) The specific heat capacity of the gas at constant pressure cp = %f kJ/kg K\n',cp); // (c) // we have, cp-cv=R,so cv = cp-R;// [kJ/kg*K] mprintf('\n (c) The specific heat capacity of the gas at constant volume cv = %f kJ/kg K\n',cv); // (d) del_U = m*cv*(T2-T1);// [kJ] mprintf('\n (d) The change in internal energy is = %f kJ\n',del_U); // (e) // using, Q=del_U+W W = Q-del_U;// [kJ] mprintf('\n (e) The work transfer is W = %f kJ\n',W); // End