clear; clc; disp('Example 5.19') // aim : To determine the // (a) Gamma, // (b) del_U // Given Values P1 = 1400;// [kN/m^2] P2 = 100;// [kN/m^2] P3 = 220;// [kN/m^2] T1 = 273+360;// [K] m = .23;// [kg] cp = 1.005;// [kJ/kg*K] // Solution T3 = T1;// since process 1-3 is isothermal // (a) // for process 1-3, P1*V1=P3*V3,so V3_by_V1 = P1/P3; // also process 1-2 is adiabatic,so P1*V1^(Gamma)=P2*V2^(Gamma),hence // and process process 2-3 is iso-choric so,V3=V2 and V2_by_V1 = V3_by_V1; // hence, Gamma = log(P1/P2)/log(P1/P3); // heat capacity ratio mprintf('\n (a) The value of adiabatic index Gamma is = %f\n',Gamma); // (b) cv = cp/Gamma;// [kJ/kg K] // for process 2-3,P3/T3=P2/T2,so T2 = P2*T3/P3;// [K] // now del_U = m*cv*(T2-T1);// [kJ] mprintf('\n (b) The change in internal energy during the adiabatic expansion is U2-U1 = %f kJ (This is loss of internal energy)\n',del_U); // End