clear; clc; disp('Example 4.17'); // aim : To determine the // (a) mass of steam in the vessel // (b) final dryness of the steam // (c) amount of heat transferrred during the cooling process // Given values V1 = .8;// [m^3] P1 = 360;// [kN/m^2] P2 = 200;// [kN/m^2] // solution // (a) // at 360 kN/m^2 vg1 = .510;// [m^3] m = V1/vg1;// mass of steam,[kg] mprintf('\n (a) The mass of steam in the vessel is = %f kg\n',m); // (b) // at 200 kN/m^2 vg2 = .885;// [m^3/kg] // the volume remains constant so x = vg1/vg2;// final dryness fraction mprintf('\n (b) The final dryness fraction of the steam is = %f \n',x); // (c) // at 360 kN/m^2 h1 = 2732.9;// [kJ/kg] // hence u1 = h1-P1*vg1;// [kJ/kg] // at 200 kN/m^2 hf = 504.7;// [kJ/kg] hfg=2201.6;//[kJ/kg] // hence h2 = hf+x*hfg;// [kJ/kg] // now u2 = h2-P2*vg1;// [kJ/kg] // so del_u = u2-u1;// [kJ/kg] // from the first law of thermodynamics del_U+W=Q, W = 0;// because volume is constant del_U = m*del_u;// [kJ] // hence Q = del_U;// [kJ] mprintf('\n (c) The amount of heat transferred during cooling process is = %f kJ \n',Q); // End