clear; clc; disp('Example 2.6'); // Given values m_dot = 4.5; // mass flow rate of air, [kg/s] Q = -40; // Heat transfer loss, [kJ/kg] del_h = -200; // specific enthalpy reduce, [kJ/kg] C1 = 90; // inlet velocity, [m/s] v1 = .85; // inlet specific volume, [m^3/kg] v2 = 1.45; // exit specific volume, [m^3/kg] A2 = .038; // exit area of turbine, [m^2] // solution // part (a) // At inlet, by equation[4], m_dot=A1*C1/v1 A1 = m_dot*v1/C1;//inlet area, [m^2] mprintf('\n (a) The inlet area is, A1 = %f m^2 \n',A1); // part (b), // At outlet, since mass flow rate is same, so m_dot=A2*C2/v2, hence C2 = m_dot*v2/A2; // Exit velocity,[m/s] mprintf('\n (b) The exit velocity is, C2 = %f m/s \n',C2); // part (c) // using steady flow equation, h1+C1^2/2+Q=h2+C2^2/2+W W = -del_h+(C1^2/2-C2^2/2)*10^-3+Q; // [kJ/kg] // Hence power developed is P = W*m_dot;// [kW] mprintf('\n (c) The power developed by the turbine system is = %f kW \n',P); // End