clear; clc; disp('Example 18.1'); // aim : To determine // (a) the coefficient of performance // (b) the mass flow of the refrigerant // (c) the cooling water required by the condenser // given values P1 = 462.47;// pressure limit, [kN/m^2] P3 = 1785.90;// pressure limit, [kN/m^2] T2 = 273+59;// entering saturation temperature, [K] T5 = 273+32;// exit temperature of condenser, [K] d = 75*10^-3;// bore, [m] L = d;// stroke, [m] N = 8;// engine speed, [rev/s] VE = .8;// olumetric efficiency cpL = 1.32;// heat capacity of liquid, [kJ/kg K] c = 4.187;// heat capacity of water, [kj/kg K] // solution // from given table // at P1 h1 = 231.4;// specific enthalpy, [kJ/kg] s1 = .8614;// specific entropy,[ kJ/kg K v1 = .04573;// specific volume, [m^3/kg] // at P3 h3 = 246.4;// specific enthalpy, [kJ/kg] s3 = .8093;// specific entropy,[ kJ/kg K v3 = .04573;// specific volume, [m^3/kg] T3= 273+40;// saturation temperature, [K] h4 = 99.27;// specific enthalpy, [kJ/kg] // (a) s2 = s1;// specific entropy, [kJ/kg k] // using s2=s3+cpv*log(T2/T3) cpv = (s2-s3)/log(T2/T3);// heat capacity, [kj/kg k] // from Fig.18.8 T4 = T3; h2 = h3+cpv*(T2-T3);// specific enthalpy, [kJ/kg] h5 = h4-cpL*(T4-T5);// specific enthalpy, [kJ/kg] h6 = h5; COP = (h1-h6)/(h2-h1);// coefficient of performance mprintf('\n (a) The coefficient of performance of the refrigerator is = %f\n',COP); // (b) SV = %pi/4*d^2*L;// swept volume of compressor/rev, [m^3] ESV = SV*VE*N*3600;// effective swept volume/h, [m^3] m = ESV/v1;// mass flow of refrigerant/h,[kg] mprintf('\n (b) The mass flow of refrigerant/h is = %f kg\n',m); // (c) dT = 12;// temperature limit, [C] Q = m*(h2-h5);// heat transfer in condenser/h, [kJ] // using Q=m_dot*c*dT, so m_dot = Q/(c*dT);// mass flow of water required, [kg/h] mprintf('\n (c) The mass flow of water required is = %f kg/h\n',m_dot); // End