clear; clc; disp('Example 17.3'); // aim : To determine // (a) the brake power // (b) the brake specific fuel consumption // (c) the indicated thermal efficiency // (d) the energy balance, expressing the various items // given values t = 30;// duration of trial, [min] N = 1750;// speed of engine, [rev/min] T = 330;// brake torque, [Nm] mf = 9.35;// fuel consumption, [kg] CV = 42300;// calorific value of fuel, [kJ/kg] cwc = 483;// jacket cooling water circulation, [kg] Ti = 17;// inlet temperature, [C] To = 77;// outlet temperature, [C] ma = 182;// air consumption, [kg] Te = 486;// exhaust temperature, [C] Ta = 17;// atmospheric temperature, [C] n_mec = .83;// mechanical efficiency c = 1.25;// mean specific heat capacity of exhaust gas, [kJ/kg K] C = 4.18;// specific heat capacity, [kJ/kg K] // solution // (a) bp = 2*%pi*N*T/60*10^-3;// brake power, [kW] mprintf('\n (a) The Brake power is = %f kW\n',bp); // (b) bsf = mf*2/bp;//brake specific fuel consumption, [kg/kWh] mprintf('\n (b) The brake specific fuel consumption is = %f kg/kWh\n',bsf); // (c) ip = bp/n_mec;// indicated power, [kW] ITE = ip/(2*mf*CV/3600);// indicated thermal efficiency mprintf('\n (c) The indicated thermal efficiency is = %f percent\n',ITE*100); // (d) // taking basis one minute ef = CV*mf/30;// energy from fuel, [kJ] eb = bp*60;// energy to brake power,[kJ] ec = cwc/30*C*(To-Ti);// energy to cooling water,[kJ] ee = (ma+mf)/30*c*(Te-Ta);// energy to exhaust, [kJ] es = ef-(eb+ec+ee);// energy to surrounding,etc,[kJ] mprintf('\n (d) Energy from fuel is = %f kJ\n',ef); mprintf('\n Energy to brake power is = %f kJ\n',eb); mprintf('\n Energy to cooling water is = %f kJ\n',ec); mprintf('\n Energy to exhaust is = %f kJ\n',ee); mprintf('\n Energy to surrounding, etc is = %f kJ\n',es); // End