clear; clc; disp('Example 15.8'); // aim : To determine // (a) the pressure, volume and temperature at cycle state points // (b) the thermal efficiency // (c) the theoretical output // (d) the mean effective pressure // (e) the carnot efficiency // given values rv = 9;// volume ratio P1 = 101;// initial pressure , [kN/m^2] V1 = .003;// initial volume, [m^3] T1 = 273+18;// initial temperature, [K] P3 = 4500;// maximum pressure, [kN/m^2] N = 3000; cp = 1.006;// specific heat capacity at constant pressure, [kJ/kg K] cv = .716;// specific heat capacity at constant volume, [kJ/kg K] // solution // taking reference Fig. 15.20 // (a) // for process 1-2 Gama = cp/cv;// heat capacity ratio R = cp-cv;// gas constant, [kJ/kg K] V2 = V1/rv;// volume at stage2, [m^3] // using PV^(Gama)=constant for process 1-2 P2 = P1*(V1/V2)^(Gama);// pressure at stage2,. [kN/m^2] T2 = T1*(V1/V2)^(Gama-1);// [K] // for process 2-3 V3 = V2;// volume at stage 3, [m^3] // since volume is constant in process 2-3 , so using P/T=constant, so T3 = T2*(P3/P2);// temperature at stage 3, [K] // for process 3-4 V4 = V1;// volume at stage 4 // using PV^(Gama)=constant for process 3-4 P4 = P3*(V3/V4)^(Gama);// pressure at stage2,. [kN/m^2] T4 = T3*(V3/V4)^(Gama-1);// temperature at stage 4,[K] mprintf('\n (a) P1 = %f kN/m^2, V1 = %f m^3, t1 = %f C,\n P2 = %f kN/m^2, V2 = %f m^3, t2 = %f C,\n P3 = %f kN/m^2, V3 = %f m^3, t3 = %f C,\n P4 = %f kN/m^2, V4 = %f m^3, t4 = %f C\n',P1,V1,T1-273,P2,V2,T2-273,P3,V3,T3-273,P4,V4,T4-273); // (b) TE = 1-(T4-T1)/(T3-T2);// thermal efficiency mprintf('\n (b) The thermal efficiency is = %f percent\n',TE*100); // (c) m = P1*V1/(R*T1);// mass os gas, [kg] W = m*cv*((T3-T2)-(T4-T1));// work done, [kJ] Wt = W*N/60;// workdone per minute, [kW] mprintf('\n (c) The theoretical output is = %f kW\n',Wt); // (d) Pm = W/(V1-V2);// mean effective pressure, [kN/m^2] mprintf('\n (g) The mean effefctive pressure is = %f kN/m^2\n',Pm); // (e) CE = (T3-T1)/T3;// carnot efficiency mprintf('\n (e) The carnot efficiency is = %f percent\n',CE*100); // End