clear; clc; disp('Example 15.7'); // aim : To determine // (a) the pressure, volume and temperature at each cycle process change points // (b) the heat transferred to air // (c) the heat rejected by the air // (d) the ideal thermal efficiency // (e) the work done // (f) the mean effective pressure // given values m = 1;// mass of air, [kg] rv = 6;// volume ratio of adiabatic compression P1 = 103;// initial pressure , [kN/m^2] T1 = 273+100;// initial temperature, [K] P3 = 3450;// maximum pressure, [kN/m^2] Gama = 1.4;// heat capacity ratio R = .287;// gas constant, [kJ/kg K] // solution // taking reference Fig. 15.20 // (a) // for point 1 V1 = m*R*T1/P1;// initial volume, [m^3] // for point 2 V2 = V1/rv;// volume at point 2, [m^3] // using PV^(Gama)=constant for process 1-2 P2 = P1*(V1/V2)^(Gama);// pressure at point 2,. [kN/m^2] T2 = T1*(V1/V2)^(Gama-1);// temperature at point 2,[K] // for point 3 V3 = V2;// volume at point 3, [m^3] // since volume is constant in process 2-3 , so using P/T=constant, so T3 = T2*(P3/P2);// temperature at stage 3, [K] // for point 4 V4 = V1;// volume at point 4, [m^3] P4 = P3*(V3/V4)^Gama;// pressure at point 4, [kN/m^2] // again since volume is constant in process 4-1 , so using P/T=constant, so T4 = T1*(P4/P1);// temperature at point 4, [K] mprintf('\n (a) P1 = %f kN/m^2, V1 = %f m^3, t1 = %f C,\n P2 = %f kN/m^2, V2 = %f m^3, t2 = %f C,\n P3 = %f kN/m^2, V3 = %f m^3, t3 = %f C,\n P4 = %f kN/m^2, V4 = %f m^3, t4 = %f C\n',P1,V1,T1-273,P2,V2,T2-273,P3,V3,T3-273,P4,V4,T4-273); // (b) cv = R/(Gama-1);// specific heat capacity, [kJ/kg K] Q23 = m*cv*(T3-T2);// heat transferred, [kJ] mprintf('\n (b) The heat transferred to the air is = %f kJ\n',Q23); // (c) Q34 = m*cv*(T4-T1);// heat rejected by air, [kJ] mprintf('\n (c) The heat rejected by the air is = %f kJ\n',Q34); // (d) TE = 1-Q34/Q23;// ideal thermal efficiency mprintf('\n (d) The ideal thermal efficiency is = %f percent\n',TE*100); // (e) W = Q23-Q34;// work done ,[kJ] mprintf('\n (e) The work done is = %f kJ\n',W); // (f) Pm = W/(V1-V2);// mean effective pressure, [kN/m^2] mprintf('\n (f) The mean effefctive pressure is = %f kN/m^2\n',Pm); // End