clear; clc; disp('Example 15.4'); // aim : To determine // (a) the pressure, volume and temperature at cycle state points // (b) the heat received // (c) the work done // (d) the thermal efficiency // (e) the carnot efficiency // (f) the work ration // (g) the mean effective pressure // given values ro = 8;// overall volume ratio; rv = 6;// volume ratio of adiabatic compression P1 = 100;// initial pressure , [kN/m^2] V1 = .084;// initial volume, [m^3] T1 = 273+28;// initial temperature, [K] Gama = 1.4;// heat capacity ratio cp = 1.006;// specific heat capacity, [kJ/kg K] // solution // taking reference Fig. 15.18 // (a) V2 = V1/rv;// volume at stage2, [m^3] V4 = ro*V2;// volume at stage 4;[m^3] // using PV^(Gama)=constant for process 1-2 P2 = P1*(V1/V2)^(Gama);// pressure at stage2,. [kN/m^2] T2 = T1*(V1/V2)^(Gama-1);// [K] P3 = P2;// pressure at stage 3, [kN/m^2] V3 = V4/rv;// volume at stage 3, [m^3] // since pressure is constant in process 2-3 , so using V/T=constant, so T3 = T2*(V3/V2);// temperature at stage 3, [K] // for process 1-4 T4 = T1*(V4/V1);// temperature at stage4, [K P4 = P1;// pressure at stage4, [kN/m^2] mprintf('\n (a) P1 = %f kN/m^2, V1 = %f m^3, t1 = %f C,\n P2 = %f kN/m^2, V2 = %f m^3, t2 = %f C,\n P3 = %f kN/m^2, V3 = %f m^3, t3 = %f C,\n P4 = %f kN/m^2, V4 = %f m^3, t4 = %f C\n',P1,V1,T1-273,P2,V2,T2-273,P3,V3,T3-273,P4,V4,T4-273); // (b) R = cp*(Gama-1)/Gama;// gas constant, [kJ/kg K] m = P1*V1/(R*T1);// mass of gas, [kg] Q = m*cp*(T3-T2);// heat received, [kJ] mprintf('\n (b) The heat received is = %f kJ\n',Q); // (c) W = P2*(V3-V2)-P1*(V4-V1)+((P3*V3-P4*V4)-(P2*V2-P1*V1))/(Gama-1);// work done, [kJ] mprintf('\n (c) The work done is = %f kJ\n',W); // (d) TE = 1-T1/T2;// thermal efficiency mprintf('\n (d) The thermal efficiency is = %f percent\n',TE*100); // (e) CE = (T3-T1)/T3;// carnot efficiency mprintf('\n (e) The carnot efficiency is = %f percent\n',CE*100); // (f) PW = P2*(V3-V2)+(P3*V3-P4*V4)/(Gama-1);// positive work done, [kj] WR = W/PW;// work ratio mprintf('\n (f) The work ratio is = %f\n',WR); // (g) Pm = W/(V4-V2);// mean effective pressure, [kN/m^2] mprintf('\n (g) The mean effective pressure is = %f kN/m^2\n',Pm); // there is minor variation in answer reported in the book // End