clear; clc; disp('Example 15.3'); // aim : To determine // (a) the pressure, volume and temperature at each corner of the cycle // (b) the thermal efficiency of the cycle // (c) the work done per cycle // (d) the work ratio // given values m = 1;// mass of air, [kg] P1 = 1730;// initial pressure of carnot engine, [kN/m^2] T1 = 273+300;// initial temperature, [K] R = .29;// [kJ/kg K] Gama = 1.4;// heat capacity ratio // solution // taking reference Fig. 15.15 // (a) // for the isothermal process 1-2 // using ideal gas law V1 = m*R*T1/P1;// initial volume, [m^3] T2 = T1; V2 = 3*V1;// given condition // for isothermal process, P1*V1=P2*V2, so P2 = P1*(V1/V2);// [MN/m^2] // for the adiabatic process 2-3 V3 = 6*V1;// given condition T3 = T2*(V2/V3)^(Gama-1); // also for adiabatic process, P2*V2^Gama=P3*V3^Gama, so P3 = P2*(V2/V3)^Gama; // for the isothermal process 3-4 T4 = T3; // for both adiabatic processes, the temperataure ratio is same, // T1/T4 = T2/T3=(V4/V1)^(Gama-1)=(V3/V2)^(Gama-1), so V4 = 2*V1; // for isothermal process, 3-4, P3*V3=P4*V4, so P4 = P3*(V3/V4); disp('(a) At line 1'); mprintf('\n V1 = %f m^3, t1 = %f C, P1 = %f kN/m^2\n',V1,T1-273,P1); disp('At line 2'); mprintf('\n V2 = %f m^3, t2 = %f C, P2 = %f kN/m^2\n',V2,T2-273,P2); disp('At line 3'); mprintf('\n V3 = %f m^3, t3 = %f C, P3 = %f kN/m^2\n',V3,T3-273,P3); disp('At line 4'); mprintf('\n V4 = %f m^3, t4 = %f C, P4 = %f kN/m^2\n',V4,T4-273,P4); // (b) n_the = (T1-T3)/T1;// thermal efficiency mprintf('\n (b) The thermal efficiency of the cycle is = %f percent\n',n_the*100); // (c) W = m*R*T1*log(V2/V1)*n_the;// work done, [J] mprintf('\n (c) The work done per cycle is = %f kJ\n',W); // (d) wr = (T1-T3)*log(V2/V1)/(T1*log(V2/V1)+(T1-T3)/(Gama-1));// work ratio mprintf('\n (d) The work ratio is = %f\n',wr); // there is calculation mistake in the book so answer is not matching // End