clear; clc; disp('Example 10.9'); // aim : To determine // (a) the theoretical power of steam passing through the turbine // (b) the thermal efficiency of the cycle // (c) the thermal efficiency of the cycle assuming there is no reheat // given values P1 = 6;// initial pressure, [MN/m^2] T1 = 450;// initial temperature, [C] P2 = 1;// pressure at stage 1, [MN/m^2] P3 = 1;// pressure at stage 2, [MN/m^2] T3 = 370;// temperature, [C] P4 = .02;// pressure at stage 3, [MN/m^2] P5 = .02;// pressure at stage 4, [MN/m^2] T5 = 320;// temperature, [C] P6 = .02;// pressure at stage 5, [MN/m^2] P7 = .02;// final pressure , [MN/m^2] // solution // (a) // using Fig 10.21 h1 = 3305;// specific enthalpy, [kJ/kg] h2 = 2850;// specific enthalpy, [kJ/kg] h3 = 3202;// specific enthalpy, [kJ/kg] h4 = 2810;// specific enthalpy, [kJ/kg] h5 = 3115;// specific enthalpy, [kJ/kg] h6 = 2630;// specific enthalpy, [kJ/kg] h7 = 2215;// specific enthalpy, [kJ/kg] W = (h1-h2)+(h3-h4)+(h5-h6);// specific work through the turbine, [kJ/kg] mprintf('\n (a) The theoretical power/kg steam/s is = %f kW\n',W); // (b) // from steam table hf6 = 251.5;// [kJ/kg] TE1 = ((h1-h2)+(h3-h4)+(h5-h6))/((h1-hf6)+(h3-h2)+(h5-h4));// thermal efficiency mprintf('\n (b) The thermal efficiency of the cycle is = %f percent\n',TE1*100); // (c) // if there is no heat hf7 = hf6; TE2 = (h1-h7)/(h1-hf7);// thermal efficiency mprintf('\n (c) The thermal efficiency of the cycle if there is no heat is = %f percent\n',TE2*100); // End