clear; clc; disp('Example 10.7'); // aim : To determine // the specific work done and compare this with that obtained when determining the rankine effficiency // given values P1 = 1000;// steam entering pressure, [kN/m^2] x1 = .97;// steam entering dryness fraction P2 = 15;//steam exhaust pressure, [kN/m^2] n = 1.135;// polytropic index // solution // (a) // from steam table, at P1 is hf1 = 762.6;// [kJ/kg] hfg1 = 2013.6;// [kJ/kg] h1 = hf1+hfg1; // [kJ/kg] sf1 = 2.138;// [kJ/kg K] sg1 = 6.583;// [kJ/kg K] s1 = sf1+x1*(sg1-sf1);// [kJ/kg K] // at P2 sf2 = .755;// [kJ/kg K] sg2 = 8.009;// [kJ/kg K] // s2 = sf2+x2(sg2-sf2) // since expansion through turbine is isentropic so s1=s2 // hence s2 = s1; x2 = (s2-sf2)/(sg2-sf2);// dryness fraction // at point 2 hf2 = 226.0;// [kJ/kg] hfg2 = 2373.2;// [kJ/kg] h2 = hf2+x2*hfg2;// [kJ/kg] // at Point 3 h3 = 226.0;// [kJ/kg] // (a) Re = (h1-h2)/(h1-h3);// rankine efficiency mprintf('\n (a) The Rankine efficiency is = %f percent\n',Re*100); // (b) vg1 = .1943;// specific volume at P1, [m^3/kg] vg2 = 10.02;// specific volume at P2, [m^3/kg] V1 = x1*vg1;// [m^3/kg] V2 = x2*vg2;// [m^3/kg] W1 = n/(n-1)*(P1*V1-P2*V2);// specific work done, [kJ/kg] // from rankine cycle W2 = h1-h2;// [kJ/kg] mprintf('\n (b) The specific work done is = %f kJ/kg\n',W1); mprintf('\n The specific work done (from rankine) is = %f kJ/kg\n',W2); // there is calculation mistake in the book so our answer is not matching // End