// Exa 4.9 clc; clear; close; // Given data Bita= 100; // Part (a) RE= 150;// in Ω VT= 25;// in mV VT= VT*10^-3;// in V IE= 0.5;// in mA IE=IE*10^-3;// in A re1= VT/IE;//in Ω R_id= 2*(Bita+1)*(re1+RE);// in Ω R_id= round(R_id*10^-3);// in kΩ disp(R_id,"The input differential resistance in kΩ is :") // Part (b) RC=10;//in kΩ RC=RC*10^3;//in Ω Rsig= 5+5;// in kΩ VoltageGain1= R_id/(Rsig+R_id);//voltage gain from the signal source to the base of Q1 and Q2 in V/V VoltageGain2= 2*RC/(2*(re1+RE));// voltage gain from the bases to the output in V/V Ad= VoltageGain1*VoltageGain2;//in V/V disp(Ad,"The overall differential voltage gain in V/V is "); // Part (c) delta_RC= 0.02*RC; R_EE= 200;//in kΩ R_EE=R_EE*10^3;//in Ω Acm= RC/(2*R_EE)*delta_RC/RC;//in V/V disp(Acm,"Common mode gain in V/V is :") // Part (d) CMRRindB= 20*log10(Ad/Acm);// in dB disp(CMRRindB,"CMRR in dB is : ") // Part (e) V_A= 100;// in V r_o= V_A/(IE);// in Ω // Ricm= (Bita+1)*(R_EE || r_o/2) Ricm= (Bita+1)*(R_EE*(r_o/2)/(R_EE+(r_o/2))); disp(Ricm*10^-6,"Input common mode resistance in MΩ is : ")