clear; clear; clc; close; //obtain the General Jacobian "A"; x1= %pi/2; y1= %pi/2; x2= %pi/2; y2= -%pi/2; x3= -%pi/2; y3= %pi/2; x4= -%pi/2; y4= -%pi/2; A1 = [2*sin(x1) sin(y1); sin(x1) 2*sin(y1)] t1=det(A1) tau1=trace(A1) d1 = ((tau1)^2) - 4*t1 A2 = [2*sin(x2) sin(y2); sin(x2) 2*sin(y2)] t2=det(A2) tau2=trace(A2) d2 = ((tau2)^2) - 4*t2 A3 = [2*sin(x3) sin(y3); sin(x3) 2*sin(y3)] t3=det(A3) tau3=trace(A3) d3 = ((tau3)^2) - 4*t3 A4 = [2*sin(x4) sin(y4); sin(x4) 2*sin(y4)] t4=det(A4) tau4=trace(A4) d4 = ((tau4)^2) - 4*t4 disp("From the above information we come to following conclusion:") disp("1. (pi/2,pi/2) --> Unstable Node.") disp("2. (pi/2,-pi/2) --> Saddle.") disp("3. (-pi/2,pi/2) --> Saddle.") disp("4. (-pi/2,-pi/2) --> Stable Node.")