//Example 3.2.2 Page 52 //Non-Linear Dynamics and Chaos, First Indian Edition, Print-2007 //Steven H. Strogatz clear; clc; close; //General INTRODUCTION disp("To show their is Transcritical Bifurcation show :") disp("1. Their are always two fixed points ,") disp("And they change their Stability around Bifurcation Point.") disp("2. Hence, the nature of given equation should be Quadratic.") disp("To show this use Taylor Expansion.") // End INTRODUCTION // u(dot) = (r+1)u - (1/2)r(u^2) + O(u^3) // u(dot) = (r+1)u - (1/2)r(u^2) + ZERO -----neglecting higher order terms // Let u(dot) = f(u) for r=-4:0.15:3 //Varying Parmater "r" to obtain Bifurcation Diagram u1 = 0; //First Fixed Point. u2 = 2*(r+1)/r; //Second Fixed Point. f1 = (r+1); //f'(u) at u1 f2 = -(r+1); //f'(u) at u2 set(gca(),"auto_clear","off") //hold on set(gca(),"grid",[2,5]) //u(double dot) = f'(u) = (r+1) - r*u if (f1>0) then //Unstable Fixed Point. plot2d(r+1,u1,style=-2) end if (f1<0) then //Stable Fixed Point. plot2d(r+1,u1,style=-3) end if (f2>0) then //Unstable Fixed Point. plot2d(r+1,u2,style=-2) end if (f2<0) then //Stable Fixed Point. plot2d(r+1,u2,style=-3) end xtitle("Bifurcation Diagram","x-Axis -(r+1)","u*-fix points") end set(gca(),"auto_clear","on") //hold off disp("Clearly from the Bifurcation Diagram we see that r=-1 is the bifurcation point.") //end of Example