// Example 3.1.2 Pg 47 //Non-Linear Dynamics and Chaos, First Indian Edition Print 2007 //Steven H.Strogatz clear; clc; close; mtlb_hold off for(r=0:1:3) //Varying value of parameter "r" to see number of fixed point solutions. x=-2:0.1:3; set(gca(),"grid",[2,5]); mtlb_hold on plot2d(x,exp(-x),style=-4); plot2d(x,r-x,style=-2); figure; //to get new graphics window set(gca(),"grid",[2,5]) xtitle("Graph showing Number of Fix Points","X-Axis","Y-Axis"); end disp("From the graph we get intersection point") disp("And hence we got our FIXED POINT SOLUTION.") disp("Clearly from graph we get stable solution when line is below exp(-x) graph.") disp("Unstable solution when line is above exp(-x) graph.") disp("From graph we infer that :") disp("1. No Fixed Points for r<1") disp("2. One Fixed Point when r=1.") disp("3. Two Fixed Points for r>1.") disp("hence Bifurcation Point is cleraly, r(c)=1") mtlb_hold off //End of Example