//Example 10.3.1 Page 357 //Non-Linear Dynamics and Chaos, First Indian Edition Print 2007 //Steven H. Strogatz clear; clear; clc; close; set(gca(),"auto_clear","off") //hold on //Taking r=2; r=2; x=poly(0,"x"); f = x-2*(x^2); //Defining Polynomial--> f(x*)-x* = 2*x(1-x)-x. Let this be f(x) disp("Fixed Points are :") y = roots(f) disp("The fixed point x*=1-(1/r) does not exists for r<1, Since x(n+1)<0 and population cannot be negative.") lambda1=r-2*r*y(1) //f'(x*) = r-2rx* lambda2=r-2*r*y(2) disp("Since, lambda1=2>1, thus orign is Unstable.") disp("Since, lambda2=0<1, thus x*=1-(1/r) is Stable.") //Number of points graphically : r1=3; //r>1 r2=1; //r=1, tangential case r3=0.5; //r<1 for xn=0:0.05:1 xn_one=r1*xn*(1-xn); plot2d(xn,xn_one,style=-3) xn_one=r2*xn*(1-xn); plot2d(xn,xn_one,style=-3) xn_one=r3*xn*(1-xn); plot2d(xn,xn_one,style=-3) y=xn; // to draw y=x line plot2d(xn,y,style=-4) end xtitle("Graph Showing Number of Fixed Points for differnent values of r","x-Axis ( xn )","y-Axis ( xn+1 )") //Similarly, check for Stability by changing r. //End of Example.