//Calculations on gas turbine clc,clear //Given: P1=1,P2=6.20 //Pressure at entering and leaving of compressor in bar T1=300 //Temperature at entering in K eta_C=88,eta_T=90 //Isentropic efficiencies of compressor and turbine in percent CV=44186 //Calorific value of fuel in kJ/kg F_A=0.017 //Fuel air ratio cp_a=1.005 //Specific heat of air in kJ/kgK g=1.4 //Specific heat ratio(gamma) cp_g=1.147 //Specific heat of gas in kJ/kgK g1=1.333 //Specific heat ratio(gamma) of gas //Solution: //Refer fig 26.26 T2!=T1*(P2/P1)^((g-1)/g) //Isentropic temperature at 2 in K T2=(T2!-T1)/(eta_C/100)+T1 //Temperature at 2 in K m_a=1 //Assume mass of air in kg m_f=F_A*m_a //Mass of fuel in kg T3=(cp_a*m_a*T2+m_f*CV)/(cp_g*(m_a+m_f)) //Temperature at 3 in K r_p=P2/P1 //pressure ratio T4!=T3/r_p^((g1-1)/g1) //Isentropic temperature at 4 in K T4=T3-eta_T/100*(T3-T4!) //Temperature at 4 in K W_C=m_a*cp_a*(T2-T1) //Compressor work in kJ/kg W_T=(m_a+m_f)*cp_g*(T3-T4) //Turbine work in kJ/kg W=W_T-W_C //Work output in kJ/kg Q1=m_f*CV //Heat added in kJ/kg eta=W/Q1 //Cycle efficiency //Results: printf("\n The turbine work, W_T = %.2f kJ/kg",W_T) printf("\n The compressor work, W_C = %.2f kJ/kg",W_C) printf("\n The thermal efficiency, eta = %.2f percent\n\n",eta*100)