//Calculations on oil engine clc,clear //Given: n=4 //Number of cylinders d_o=5 //Diameter of orifice in cm Cd=0.6 //Coefficient of discharge for orifice d=10.5,l=12.5 //Bore and stroke in cm N=1200 //Engine speed in rpm T=147 //Brake torque delivered in Nm m_f=5.5 //Fuel consumption in kg/hr CV=43100 //Calorific value in kJ/kg deltaP_o=5.7 //Head across orifice in cm of water P1=1.013 //Atmospheric pressure in bar T1=20+273 //Atmospheric temperature in K g=9.81 //Accelaration due to gravity in m/s^2 //Solution: //(a) bp=2*%pi*N/60*T*10^-3 //Brake power in kW eta_bt=bp*3600/(m_f*CV) //Brake thermal efficiency //(b) A=%pi/4*d^2*10^-4 //Area of cylinder in m^2 bmep=bp*1000/(n*l/100*A*N/(2*60)) //Brake mean effective pressure in N/m^2 //(c) rho_w=1000 //Mass density of water in kg/m^3 deltaP_o=rho_w*g*deltaP_o/100 //Pressure drop across orifice in N/m^2 R=0.287 //Specific gas constant in kJ/kgK rho_a=P1*10^5/(R*10^3*T1) //Mass density of air in kg/m^3 rho_a=round(10*rho_a)/10 A_o=%pi/4*d_o^2*10^-4 //Area of orifice in m^2 V_a=Cd*A_o*sqrt(2*deltaP_o/rho_a) //Air inhaled in m^3/s V_s=(%pi/4)*d^2*l*n*N/(2*60)*10^-6 //Swept volume in m^3/s eta_vol=V_a/V_s //Volumetric efficiency //Results: printf("\n (a)Brake thermal efficiency, eta_bt = %.1f percent",eta_bt*100) printf("\n (b)Brake mean effective pressure, bmep = %.2f bar",bmep*10^-5) printf("\n (c)Volumetric efficiency, eta_vol = %.1f percent\n\n",eta_vol*100)