//Calculations on oil engine clc,clear //Given: d=18,l=36 //Bore and stroke in cm N=285 //Average engine speed in rpm T=393 //Brake torque delivered in Nm imep=7.2 //Indicated mean effective pressure in bar m_f=3.5 //Fuel consumption in kg/hr m_w=4.5 //Mass of cooling water used in kg/min deltaT_w=36 //Cooling water temperature rise in degreeC A_F=25 //Air-fuel ratio T2=415+273 //Exhaust gas temperature in K P=1.013 //Atmospheric pressure in bar T1=21+273 //Room temperature in K CV=45200 //Calorific value in kJ/kg p=15 //Perentage of hydrogen contained by the fuel R=0.287 //Specific gas constant in kJ/kgK cv=1.005,cp=2.05 //Specific heat for dry exhaust gases and superheated steam in kJ/kgK //Solution: //(a) ip=imep*10^2*l*%pi/4*d^2*N/(2*60)*10^-6 //Indicated power in kW ip=round(10*ip)/10 eta_it=ip*3600/(m_f*CV) //Indicated thermal efficiency //(b) m_a=m_f*A_F/60 //Mass of air inhaled in kg/min m_a=round(100*m_a)/100 V_a=m_a*R*T1/(P*100) //Volume of air inhaled in m^3/min V_s=(%pi/4)*d^2*l*10^-6*N/2 //Swept volume in m^3/min eta_vol=V_a/V_s //Volumetric efficiency //Heat balance sheet Q1=m_f/60*CV //Heat input in kJ/min bp=2*%pi*N/60*T*10^-3 //Brake power in W Q_bp=bp*60 //Heat equivalent to brake power in kJ/min cp_w=4.1868 //Specific heat of water in kJ/kgK Q_w=m_w*cp_w*deltaT_w //Heat in cooling water in kJ/min m_e=m_a+m_f/60 //Mass of exhaust gases in kg/min //Since, 2 mole of hydrogen gives 1 mole of water on combine with 1 mole of oxygen //Thus, 1 mole of hydrogen gives 1/2 mole or 9 unit mass of water m_h=m_f/60*p/100 //Mass of hydrogen in kg/min m_s=9*m_h //Mass of steam in exhaust gases in kg/min m_d=m_e-m_s //Mass of dry exhaust gases in kg/min Q_d=m_d*cv*(T2-T1) //Heat in dry exhaust gases in kJ/min lv=2256.9 //Latent heat of vapourisation of water in kJ/kg Q_s=m_s*((373-T1)+lv+cp*(T2-373)) //Heat in steam in exhaust gases in kJ/min Q_r=Q1-Q_bp-Q_w-Q_d-Q_s //Heat in radiation in kJ/min //Results: printf("\n (a)The indicated thermal efficiency, eta_it = %.1f percent",eta_it*100) printf("\n (b)The volumetric efficiency, eta_vol = %.1f percent",eta_vol*100) printf("\n\n Heat balance sheet\n\t Heat input = %.1f kJ/min, %d percent",Q1,Q1/Q1*100) printf("\n\t Heat equivalent to b.p. = %.1f kJ/min, %.1f percent",Q_bp,Q_bp/Q1*100) printf("\n\t Heat in cooling water = %.1f kJ/min, %.1f percent",Q_w,Q_w/Q1*100) printf("\n\t Heat in dry exhaust gases = %.1f kJ/min, %.1f percent",Q_d,Q_d/Q1*100) printf("\n\t Heat in steam in exhaust gases = %.1f kJ/min, %.1f percent",Q_s,Q_s/Q1*100) printf("\n\t Heat in radiation = %.1f kJ/min, %.1f percent",Q_r,Q_r/Q1*100)