// FUNDAMENTALS OF ELECTICAL MACHINES // M.A.SALAM // NAROSA PUBLISHING HOUSE // SECOND EDITION // Chapter 11 : SINGLE-PHASE MOTORS // Example : 11.2 clc;clear; // clears the console and command history // Given data V_t = 220 // supply voltage in V R_1 = 6 // equivalent parameters of single phase induction motor in ohm R_2 = 6 // equivalent parameters of single phase induction motor in ohm X_1 = 10 // equivalent parameters of single phase induction motor in ohm X_2 = 10 // equivalent parameters of single phase induction motor in ohm N = 1500 // speed in rpm s = 0.03 // slip X_m = 150 // equivalent parameters of single phase induction motor in ohm // caclulations Z_f = 0.5*%i*X_m*((R_2/s)+%i*X_2)/((R_2/s)+%i*(X_2+X_m)) // impedance due to forward field in ohm R_f = real(Z_f) // from Z_f Z_b = 0.5*%i*X_m*((R_2/(2-s))+%i*X_2)/((R_2/(2-s))+%i*(X_2+X_m)) // impedance due to backward field in ohm R_b = real(Z_b) // from Z_b Z_t = R_1+%i*X_1+Z_f+Z_b // total impedence in ohm I_1 = V_t/Z_t // input current in A P_d = (abs(I_1))^2*(R_f-R_b)*(1-s) // power developed in W T_d = 9.55*P_d/N // torque in N-m // display the result disp("Example 11.2 solution"); printf(" \n input current \n I_1 = %.2f<%.2f A \n", abs(I_1),atand(imag(I_1),real(I_1))); printf(" \n power developed \n P_d = %.2f \n", P_d ); printf(" \n torque \n T_d = %.2f \n", T_d ); printf("\n NOTE : ERROR : There is calculation mistake in Z_b in textbook. So there is change in answers from textbook")