//Eg-7.5 //pg-338 clear clc x = [0 1 2 3 4]; y = [1 2 9 22 41]; m = length(x); n = 2; //since we have 2 variables //Using S for summation eg: Sx2y => summation(x^2*y) Sx = sum(x); Sx2 = sum(x.^2); Sx3 = sum(x.^3); Sx4 = sum(x.^4); Sy = sum(y); Sxy = sum(x.*y); Sx2y = sum((x.^2).*y); a(1,1) = Sx2 - (Sx)^2/m; a(1,2) = Sx3 - Sx*Sx2/m; a(2,1) = Sx3 - Sx2*Sx/m; a(2,2) = Sx4 - Sx2^2/m; c(1,1) = Sxy - Sx*Sy/m; c(2,1) = Sx2y - Sx2*Sy/m; printf('\nA =') disp(a) printf('c =') disp(c) b = inv(a)*c; printf('Solving the matrix equation Ab = c using matrix inversion gives\n\nb=') disp(b) //The coefficient 'alpha' can be obtained from equaiton 'alpha' = Sy/m - (b(1)*Sx + b(2)*Sx2)/m ; alpha = Sy/m - (b(1)*Sx + b(2)*Sx2)/m ; printf('\nThe coefficent alpha = %f\n',alpha) printf('\nThe lease square polynomial of second order is, thus \n y = %f + (%f)*x + (%f)*x^2\n\n',alpha,b(1),b(2))