//Eg-14.2 //pg-582 clear clc close() //Approximate the first and second derivatives using central difference formula //At i = 1 ; 14y0 - 37y1 + 18y2 = 0; // Using y0 = 0 // -37y1 + 18y2 = 0 (1) //At i = 2 ; 14y1 - 37y2 + 18y3 = 0; (2) //At i = 3 ; and taking y4 = 1 ; 14y2 - 37y3 = -18; (3) //We have 3 equations and 3 unknowns A = [-37 18 0;14 -37 18;0 14 -37]; B = [0;0;-18]; //Thomas method b0 = -37; c0 = 18; a1 = 14; b1 = -37; c1 = 18; a2 = 14; b2 = -37; r0 = 0; r1 = 0; r2 = -18; B0 = b0; G0 = r0/B0; B1 = b1 - a1*c0/B0; G1 = (r1 - a1*r0)/B1; B2 = b2 - a2*c1/B1; G2 = (r2 - a2*r1)/B2; x(3) = G2; x(2) = G1 - c1*x(3)/B1; x(1) = G0 - c0*x(2)/B0; disp(x) y(1) = 0; //BC 1 y(2:4) = x(1:3); y(5) = 1 //BC 2 x1 = 0:0.25:1; plot(x1,y,'ks') xlabel('x') ylabel('y')