//Eg-13.18 //pg-565 clear clc deff('out = func(in1,in2)','out = (1-in2*sin(in1)/cos(in1))') x(1) = 0; y(1) = 0; h = 0.1; for(i = 1:10) x(i+1) = x(i) + h; end //Using RK method a = (2^0.5-1)/2; b = (2-2^0.5)/2; c = -(2^0.5)/2; d = 1 + (2^0.5)/2; printf(' x y\n') for(i = 1:4) k1(i) = h*func(x(i),y(i)); k2(i) = h*func(x(i)+h/2,y(i)+k1(i)/2); k3(i) = h*func(x(i)+h/2,y(i)+a*k1(i)+b*k2(i)); k4(i) = h*func(x(i)+h,y(i)+c*k2(i)+d*k3(i)); y(i+1) = y(i) + 1/6*(k1(i)+2*b*k2(i)+2*d*k3(i)+k4(i)); end for(i = 2:4) printf('%f %f\n',x(i),y(i)) end x4 = x(5); x3 = x(4); x2 = x(3); x1 = x(2); x0 = x(1); y3 = y(4); y2 = y(3); y1 = y(2); y0 = y(1); //Using the equation : y4 = 1/25*[48*y3 - 36*y2 + 16*y1 - 3*y0 + 12*h*func(x4,y4)] // => y4 - 1/25*12*h*func(x4,y4) = 1/25*[48*y3 - 36*y2 + 16*y1 - 3*y0 ] // => y4 = 0.39731/1.02029 analytically y4 = 0.39731/1.02029; printf('\n\nThe value of y4 = %f\n',y4) printf('\nThe analytical solution of this problem is y = sinx.\nThus, the exact solution is y(x = 0.4) = %f\n',y4)