//Ex:3.7 clc; clear; close; dB=21; n=5;// five element array r1=10^(dB/20);// because dB=20log(r1) r=floor(r1); // Tchebyscheff polynomial of degree (n-1)=5-1=4 // T4(xo)=r // 8xo^4-8xo^2+1=20 // then using ulternate formula, we get the value of xo m=4;// degree of the equation a=sqrt(r^2-1); A=(r+a)^(1/m); B=(r-a)^(1/m); xo1=.5*(A+B); xo=1.3132;// approx. value of xo1 is 1.3132 because xo1=1.313295 // Thus Et, i.e., E5 from the equation // E5=aoz+a1(2z^2-1)+a2(8z^4-8z^2+1), where z=(x/xo) // E5=T4(xo) // ao(x/xo)+a1(2(x/xo)^2-1)+a2(8(x/xo)^4-8(x/xo)^2+1)=8x^4-8x^2+1 // Now equating terms, we have // a2(x/xo)^4=x^4 a2=xo^4; // a1*2(x/xo)^2-8(x/xo)^2*a2=-8x^2 // a1-4a2=-4x^2 a1=4*a2-4*xo^2 // ao-a1+a2=1 ao=a1-a2+1; a22=a2/a2;// the ratio of the a2 to a2 a12=a1/a2;// the ratio of the a1 to a2 ao2=2*ao/a2;// the ratio of the 2ao to a2 R=r/sqrt(2); // Y=acos(R/sqrt(2))= log(R+sqrt(R^2-1)) Y=log(R+sqrt(R^2-1))/log(10); // cosh(Y/4)=cosh(1.19/4)=cosh(0.2975) // because cosh(x)= 1+(x^2/2)+(x^4/24)+..... // cosh(0.2975)=1+(0.2975^2/2)+(0.2975^4/24) A=1+(0.2975^2/2)+(0.2975^4/24); // HPBW= 2*asin((y/180*d)*acos(1/x0*cosh(Y/4))) // HPBW= 2*asin((y*2/180*y)*acos(1/x0*cosh(0.2975))) // HPBW= 2*asin((2/180)*acos(1/x0*A)) HPBW=2*(asin((2/180)*(acos(A/xo))*(180/%pi)))*180/%pi;// half power bandwidth in degree printf("The value of the parameter r= %d", r); printf("\n The value of the parameter xo= %f", xo); printf("\n The value of the current amplitude parameter ao= %f", ao); printf("\n The value of the current amplitude parameter a1= %f", a1); printf("\n The value of the current amplitude parameter a2= %f", a2); printf("\n The value of the relative amplitude parameter a22= %f", a22); printf("\n The value of the relative amplitude parameter a12= %f", a12); printf("\n The value of the relative amplitude parameter ao2= %f", ao2); printf("\n The half power bandwidth= %f degree", HPBW); printf("\n The five element array is shown in figure in the given textbook")