//Example5.14:"Output noise voltage"" //Page 167 //figure 5.29 clear; clc; Rf=99000; // in Ohm Ri=1000; //in ohm Rs=100; //in ohm Av=1+Rf/Ri; disp(Av,"Av ordinary value"); disp(20*log10(Av),"Av dB value"); Anoise=Av; //for non inverting amplifier Rnoise=Rs+Rf*Ri/(Rf+Ri); disp("Ohm",Rnoise,"Rnoise"); T=300; //Given in degree cel. K=1.38*10^-23; //Boltzmann's constant Vind=4*10^-9; //In V/Hz Iind=0.6*10^-12; //in A/Sqrtof Hz eth=(4*K*T*Rnoise)^0.5; //sqared the etot=((Vind^2)+(Iind*Rnoise)^2 +eth^2)^0.5; disp("V/(Hz)^0.5",etot,"etotal"); funity=10*10^6; //in Hz f2=funity/Anoise; disp("Hz",f2,"f2"); BWnoise=f2*1.57; disp("Hz",BWnoise,"BWnoise"); en=etot*(BWnoise)^0.5; disp("V",en,"en"); en_out=en*Anoise; disp("V",en_out,"en_out"); //for a nominal output signal of 1V RMS signal to noise ratio is signal=1; //in V Noise=en_out; S_N=signal/Noise; disp(S_N,"Signal to Noise ratio "); //answer in book is approxmately disp(20*log10(S_N),"S/N in dB"); //Result