//Variable declaration: uC = 3.7*10**-4 //Viscosity of benzene (lb/ft.s) uH = 2.05*10**-4 //Viscosity of water @200 . (lb/ft.s) u2 = 2.16*10**-4 //Viscosity of water @192 . (lb/ft.s) pC = 54.8 //Density of benzene (lb/ft^3) pH = 60.13 //Density of water (lb/ft^3) cpC = 0.415 //Specific heat capacity of benzene (Btu/lb..) cpH = 1 //Specific heat capacity of water (Btu/lb..) sgC = 0.879 kC = 0.092 //Thermal conductivity of benzene (Btu/h.ft..) kH = 0.392 //Thermal conductivity of water @200 . (Btu/h.ft..) k2 = 0.390 //Thermal conductivity of water @192 . (Btu/h.ft..) mC = 2500 //Flow rate of benzene (lb/s) mH = 4000 //Flow rate of water (lb/s) Re = 13000 //Reynolds number dTc = 120-60 //Difference in temperature heating for benzene Tw = 200 //Temperatperature of hot water (.) //For 2-inch schedule 40 pipe Ai = 0.541 //Inside area of pipe (ft^2/ft) Ao = 0.622 //Outside area of pipe (ft^2/ft) Di = 2.067 //Inside diameter of pipe (inch) Do = 2.375 //Outside diameter of pipe (inch) Si = 0.0233 //Inside surface area of pipe (ft^2) dXw = 0.128 //Width of pipe (ft) pi = %pi //For 4-inch schedule 40 pipe Dio = 4.026 //Inside diameter of pipe (inch) Doi = Do //Outside diameter of pipe (inch) kw = 26 //Calculations: function [a] = St(Re,Pr) //Dittus Boelter equation a = 0.023*Re**-0.2*Pr**-0.667 endfunction //For inside tubes: Dicalc = 4*mC/(Re*pi*uC)/3600 //Inside diameter (ft) mHcalc = Re*pi*uH*(Doi+Dio)/4*3600/12 //Mass flow rate of water (lb/h) Q = mC*cpC*dTc //Heat in water (Btu/h) dTH = Q/mH //Temperature difference of water (.) THo = Tw - dTH //Outlet temperature of water (.) THav = (Tw+THo)/2 //Average temperature of water (.) //For benzene: PrC = cpC*uC/kC*3600 //Prandtl number StC = round(St(13000, PrC) * 10**5)/10**5 //Stanton number hi = StC*cpC*mC/Si //Heat transfer coefficient (Btu/h.ft^2..) //For water: ReH = 4*mH/3600/(pi*u2*(Doi+Dio)/12) //Reynolds number PrH = cpH*(u2)/k2*3600 //Prandtl number StH = round(St(ReH, PrH) * 10**5)/10**5 //Stanton number Sann = pi/4*(Dio**2-Doi**2)/144 //Surface area of annulus (ft^2) ho = round(StH*cpH*mH/Sann) //Heat transfer coefficient (Btu/h.ft^2..) //For pipe: Dlm = (Do-Di)/log(Do/Di)*12 //Log mean difference in diameter (ft) Uo = 1/(Do/Di/hi + dXw*Do/kw/Dlm + 1/ho) //Overall heat transfer coefficient (Btu/h.ft^2..) dTlm = (124.4-80)/log(124.4/80) //Log mean temperature difference (.) L = Q/(Uo*0.622*dTlm) //Length of pipe (ft) //Result: printf("The required length of pipe: %.1f ft",L)