//Variable declaration: h1 = 1200.0 //Hot film coefficient (Btu/h.ft^2..) h2 = 1175.0 //Cold film coefficient (Btu/h.ft^2..) L = 200.0 //Length of pipe (ft) MC = 30000.0 mc = 22300.0 T1 = 300.0 //Inlet temperature of hot fluid in pipe (.) t1 = 60.0 //Inlet temperature of cold fluid in pipe (.) syms T2 //Outlet temperature of hot fluid . syms t2 //Outlet temperature of cold fluid . //From table 6.2: ID = 2.067 //Inside diameter of pipe (in) OD = 2.375 //Outside diameter of pipe (in) Dx = 0.154 //Thickness of pipe (in) Ai = 0.541 //Inside sectional area of pipe (ft^2/ft) k = 25.0 //Thermal conductivity of pipe (Btu/h) //Calculation: Ui = 1.0/((1.0/h1) +(Dx/(k*12.0))+(1.0/(h2*(OD/ID)))) //Overall heat transfer coefficient (Btu/h.ft^2..) Ai1 = Ai*L //Inside area of pipe (ft^3/ft) QH = MC*(T1-T2) //Heat transfer rate of hot fluid (Btu/h) QC = mc*(t2-t1) //Heat transfer rate of cold fluid (Btu/h) t2ht = 195 //t2 by hit and trial [x] = fsolve(T2,QC-QH) T2 = x(1) DTlm = (T1-t1-T2+t2)/log((T1-t1)/(T2-t2)) //Log mean temperature difference (.) Q = Ui*Ai1*subst(t2ht,t2,DTlm) //Total heat transfer rate (Btu/h) //Result: disp("T2 :") disp(subst(t2ht,t2,T2)) disp("t2 :") disp(subst(t2ht,t2,t2)) disp("Qdot :") disp(Q/10**6) disp("x 10**6 Btu/h")