//Variable declaration: Ts = 200.0+460.0 //Surface temperature of pipe (°R) Too = 70.0+460.0 //Air temperature (°R) D = 0.5 //Diameter of pipe (ft) R = 0.73 //Universal gas constant (ft^3.atm.R^−1.lb.mol^−1) P = 1.0 //Atmospheric pressure (Pa) MW = 29.0 //Molecular weight of fluid (mol) //From Appendix: mu = 1.28*10**-5 //Absolute viscosity (lb/ft.s) k = 0.016/3600.0 //Thermal conductivity (Btu/s.ft.°F) g = 32.174 //Gravitational acceleration (ft/s^2) //Calculation: Tav = (Ts+Too)/2 //Average temperature (°R) v = R*Tav/P //kinematic viscosity (ft^3/lbmol) p = MW/v //Air density (lb/ft^3) B = 1.0/Tav //Coefficient of expansion (°R^-1) DT = Ts-Too //Temperature difference (°R) Gr = D**3*p**2*g*B*DT/mu**2 //Grashof number //From equation 10.5: Cp = 0.25 //Air heat capacity (Btu/lb.°F) Pr = Cp*mu/k //Prandtl number GrPr = 10**8.24 //Rayleigh number //From Holman^(3): Nu = 10**(1.5) //Nusselt number h = Nu*(k/D)*3600.0 //Air heat transfer film coefficient (Btu/h.ft.°F) //Result: printf("The required air heat transfer film coefficient is : %.2f Btu/h.ft.°F .",h)