// Exa 4.15 clc; clear; close; format('v',5) // Given data S = 12; V_CC = 16;// in V R_C = 1.5 * 10^3;// in ohm V_CE = 8;// in V V_BE= 0.2;// in V I_C = 4;// in mA I_C = I_C * 10^-3;// in A Beta = 50; // Vth = V_CC*(R2/(R1+R2)) and Rth = (R1*R2)/(R1+R2); //Applying KVL to input side, Vth - I_B*Rth - V_BE - I_E*R_E = 0 (i) I_B = I_C/Beta;// in A I_E = I_B*(1+Beta);// in A // Applying KVL to output section, R_E = (V_CC - (I_C*R_C) - V_CE)/I_E;// in ohm //S = ((Rth+R3)*(1+Beta))/(Rth + ((1+Beta)*R_E)) (ii) Rth= R_E*(1+Beta-S-Beta*S)/(S-1-Beta);// in ohm V_BN= V_BE+I_E*R_E;//in V Vth= V_BN+I_B*Rth;// in V // Vth= V_CC*R2/(R1+R2) and Rth= R2*R1/(R1+R2), So Vth= V_CC*Rth/R1 R1= V_CC*Rth/Vth;// in ohm R2= R1*Rth/(R1-Rth);// in ohm R1= round(R1*10^-3);// in k ohm R2= R2*10^-3;// in k ohm R_E= R_E*10^-3;// in k ohm disp(R1,"The value of R1 in kΩ is : ") disp(R2,"The value of R2 in kΩ is : ") disp(R_E,"The value of R_E in kΩ is : ")