// chapter 13 // example 13.1 // page 272 Rc=4 // kilo ohm Vcc=10 // V Ib_zero=10d-3 // mA Ib_max=15d-3 // mA Ib_min=5d-3 // mA gain_beta=100 Ic_zero=Ib_zero*gain_beta Ic_max=Ib_max*gain_beta Ic_min=Ib_min*gain_beta Vc_zero=Vcc-Ic_zero*Rc Vc_max=Vcc-Ic_max*Rc Vc_min=Vcc-Ic_min*Rc printf("As collector current increases from %.3f mA to %.3f mA \noutput voltage decreases from %.3f V to %.3f V \n",Ic_zero,Ic_max,Vc_zero,Vc_max) printf("As collector current decreases from %.3f mA to %.3f mA \noutput voltage increases from %.3f V to %.3f V \n",Ic_max,Ic_min,Vc_max,Vc_min) printf("Thus output voltage is 180 degrees out of phase from input voltage \n") printf("Note : \ni) input voltage and input current are in phase \nii) input voltage and output current are in phase \niii) output voltage is 180 degrees out of phase with input voltage\n") // plotting base current and collector current and output voltage in same graph using following code instead of xcos clf() x=linspace(0,2*%pi,100) ib=5*sin(x)+10 ic=0.5*sin(x)+1 vc=-4*sin(x)+6 plot2d(x,ib,style=1,rect=[0,0,20,20]) xtitle("base current(micro ampere) - Black collector current(mA) - Blue output voltage(V) - Green ","t") plot2d(x,ic,style=2,rect=[0,0,20,20]) plot2d(x,vc,style=3,rect=[0,0,20,20])