//Example No. 13_3 //Picard's Method //Pg No. 417 clear ; close ; clc ; funcprot(0) //y'(x) = x^2 + y^2,y(0) = 0 //y(1) = y0 + integral(x^2 + y0^2,x0,x) //y(1) = x^3/3 //y(2) = 0 + integral(xY2 + y1^2,x0,x) // = integral(x^2 + x^6/9,0,x) = x^3/3 + x^7/63 //therefore y(x) = x^3 /3 + x^7/63 deff('Y = y(x)','Y = x^3/3 + x^7/63 ') disp(y(1),'y(1) = ',y(0.2),'y(0.2) = ',y(0.1),'y(0.1) = ','for dy(x) = x^2 + y^2 the results are ') //y'(x) = x*e^y, y(0) = 0 //y0 = 0 , x0 = 0 //Y(1) = 0 + integral(x*e^0,0,x) = x^2/2 //y(2) = 0 + integral( x*e^( x^2/2 ) ,0,x) = e^(x^2/2)-1 //therefore y(x) = e^(x^2/2) - 1 deff('Y = y(x)','Y = exp(x^2/2) - 1 ') disp(y(1),'y(1) = ',y(0.2),'y(0.2) = ',y(0.1),'y(0.1) = ',,'for dy(x) = x*e^y the results are ')