clear; clc; printf("\t\t\tProblem Number 3.11\n\n\n"); // Chapter 3 : The First Law Of Thermodynamics // Problem 3.11 (page no. 111) // Solution //Given data // Inlet Outlet //Pressure(psia) 1000 1 //Temperature(F) 1000 101.74 //Velocity(ft/s) 125 430 //Inlet position(ft) +10 0 //Enthalpy(Btu/LBm) 1505.4 940.0 //Steam flow rate of 150000 LBm/hr //From the table, Z1=10; V1=125; h1=1505.4; Z2=0; V2=430; h2=940.0; //Energy equation is given by //((Z1/J)*(g/gc)) + (V1^2/(2*gc*J)) + h1 + q = ((Z2/J)*(g/gc)) + (V2^2/(2*gc*J)) + h2 + w/J printf("Solution for (a) \n"); q=0; //net heat J=778; //Conversion factor gc=32.174; //Unit: (LBm*ft)/(LBf*s^2) //gc is constant of proportionality g=gc; //Unit:ft/s^2 //g=The local gravity //W1=w/J; //Energy equation is given by W1=((Z1/J)*(g/gc)) + (V1^2/(2*gc*J)) + h1 + q - ((Z2/J)*(g/gc)) - (V2^2/(2*gc*J)) - h2; //Unit:Btu/LBm printf("If heat losses are negligible,\n"); printf("Total work of the turbine is %f Btu/LBm\n",W1); printf("Total work of the turbine is %f Btu/hr\n",W1*150000); //(W*150000*778)/(60*33000) //in terms of horsepower //1 hr=60 min //1 hp=33000 (ft*LBf) printf("Total work of the turbine is %f hp \n",(W1*150000*778)/(60*33000)); //1 hp =0.746 kW printf("Total work of the turbine is %f kW \n\n",((W1*150000*778)/(60*33000))*0.746); printf("\nSolution for (b) \n"); //Heat losses equal 50,000 Btu/hr q=50000/150000; //Unit:Btu/LBm //Heat loss W2=((Z1/J)*(g/gc)) + (V1^2/(2*gc*J)) + h1 - q - ((Z2/J)*(g/gc)) - (V2^2/(2*gc*J)) - h2; //Unit:Btu/LBm printf("If heat losses equal 50,000 Btu/hr , Total work of the turbine is %f Btu/LBm\n",W2);