//scilab 5.4.1 clear; clc; printf("\t\t\tProblem Number 11.6\n\n\n"); // Chapter 11 : Heat Transfer // Problem 11.6 (page no. 559) // Solution //For Brick, deltaX=0.150; //Unit:m //150 mm = 0.150 m //deltaX=length //unit:meter A=1; //area //unit:m^2 k=0.692; //Unit:W/(m*C) //k=proportionality constant //k=thermal conductivity //From the table R=deltaX/(k*A); //Thermal resistance //Unit:C/W printf("For brick,\n"); printf("The resistance is %f Celcius/W\n\n",R); R1=R; //For Concrete, deltaX=0.012; //Unit:m //12 mm = 0.0120 m //deltaX=length //unit:meter A=1; //area //unit:m^2 k=1.385; //Unit:W/(m*C) //k=proportionality constant //k=thermal conductivity //From the table R=deltaX/(k*A); //Thermal resistance //Unit:C/W printf("For Concrete,\n"); printf("The resistance is %f Celcius/W\n\n",R); R2=R; //For plaster, deltaX=0.0120; //Unit:m //12 mm = 0.0120 m //deltaX=length //unit:meter A=1; //area //unit:m^2 k=0.519; //Unit:W/(m*C) //k=proportionality constant //k=thermal conductivity //From the table R=deltaX/(k*A); //Thermal resistance //Unit:C/W printf("For plaster,\n"); printf("The resistance is %f Celcius/W\n\n",R); R3=R; Ro=R1+R2+R3; //Rot=The overall resistance //unit:C/W printf("The overall resistance is %f Celcius/W\n",Ro); T1=0; //temperature maintained at one face //Celcius T2=20; //tempetature maintained at other face //Celcius deltaT=T2-T1; //Change in temperature //Celcius Q=deltaT/Ro; //Q=Heat transfer //Unit:W/m^2; //ohm's law (fourier's equation) printf("Heat transfer per square meter of wall is %f W/m^2",abs(Q));