//scilab 5.4.1 clear; clc; printf("\t\t\tProblem Number 11.4\n\n\n"); // Chapter 11 : Heat Transfer // Problem 11.4 (page no. 558) // Solution //For Brick, deltaX=6/12; //6 inch = 6/12 feet //deltaX=length //unit:ft A=1; //area //unit:ft^2 k=0.40; //Unit:Btu/(hr*ft*F) //k=proportionality constant //k=thermal conductivity //From the table R=deltaX/(k*A); //Thermal resistance //Unit:(hr*f)/Btu printf("For brick,\n"); printf("The resistance is %f (hr*F)/Btu\n\n",R); R1=R; //For Concrete, deltaX=(1/2)/12; //(1/2) inch = (1/2)/12 feet //deltaX=length //unit:ft A=1; //area //ft^2 k=0.80; //Unit:Btu/(hr*ft*F) //k=proportionality constant //k=thermal conductivity //From the table R=deltaX/(k*A); //Thermal resistance //Unit:(hr*f)/Btu printf("For Concrete,\n"); printf("The resistance is %f (hr*F)/Btu\n\n",R); R2=R; //For plaster, deltaX=(1/2)/12; // (1/2) inch = 6/12 feet //deltaX=length //unit:ft A=1; //area //ft^2 k=0.30; //Unit:Btu/(hr*ft*F) //k=proportionality constant //k=thermal conductivity //From the table R=deltaX/(k*A); //Thermal resistance //Unit:(hr*f)/Btu printf("For plaster,\n"); printf("The resistance is %f (hr*F)/Btu\n\n",R); R3=R; Rot=R1+R2+R3; //Rot=The overall resistance //unit:(hr*F)/Btu printf("The overall resistance is %f (hr*F)/Btu\n\n",Rot); T1=70; //temperature maintained at one face //fahrenheit T2=30; //tempetature maintained at other face //fahrenheit deltaT=T2-T1; //fahrenheit //Change in temperature Q=deltaT/Rot; //Q=Heat transfer //Unit:Btu/(hr*ft^2); //ohm's law (fourier's equation) printf("Heat transfer per square foot of wall is %f Btu/hr*ft^2",abs(Q));