// Exa 3.22 (Miss printed as example 3.19) clc; clear; close; format('v',6) // Given data S = 10; bita = 50; h_fe = bita; V_CC= 20;// in V V_CE = 10;// in V R_C = 2;// in k ohm I_C = 4;// in mA I_B =I_C/bita;// in mA // Applying KVL to collector loop, V_CC -I_C*R_C - V_CE - I_E*R_E = 0 or R_E = (V_CC -I_C*R_C - V_CE)/(I_C+I_B);// in k ohm (on putting I_E= I_C+I_B) R_E= round(R_E*10^3);// in ohm disp(R_E,"The value of R_E in ohm is"); // Formula S = (1+bita)*( (1 + (R_B/R_E))/( (1+bita) + (R_B/R_E) ) ) or R_B= (1+bita)*(1-S)*R_E/(S-1-bita);// in ohm // But R_B= R1 || R2= R1*R2/(R1+R2) => R2/(R1+R2)= R_B/R1 (i) // Calculation of R1 and R2 : V_BE= 0.2;// in V // Applying KVL to input loop, V_R2= V_BE+(I_C+I_B)*10^-3*R_E;// in V // But V_R2= R2*V_CC/(R1+R2) => R2/(R1+R2)= V_R2/V_CC (ii) // On comparing eq (i) and (ii) R1= R_B*V_CC/V_R2;// in ohm R2= R1*V_R2/(V_CC-V_R2);// in ohm R1= R1*10^-3;// in k ohm R2= R2*10^-3;// in k ohm disp(R1,"The value of R1 in k ohm is : ") disp(R2,"The value of R2 in k ohm is : ") // Effect of Reducing S or 3 : S=3; // Formula S = (1+bita)*( (1 + (R_B/R_E))/( (1+bita) + (R_B/R_E) ) ) or R_B= (1+bita)*(1-S)*R_E/(S-1-bita);// in ohm R_B= R_B*10^-3;// in k ohm disp(R_B,"When S<=3, the value of R_B in k ohm is : ") disp("Thus S is reduced below 3 at the cost of reduction of it''s input impedance")