// Exa 3.3 format('v',7);clc;clear;close; // Given data B = 10*10^-3;// in Wb/m^2 N = 200;// in turns l = 16;// in mm K = 12*10^-9;// in Nm/rad J = 50*10^-9;// in kg-m^2 D = 5*10^-9;// in Nm/rads^-1 R = 120;// in ohm A = l^2;// in mm^2 A = A * 10^-6;// in m^2 G = N*B*A;// in Nm/A i = 1;// in µA i = i * 10^-6;// in A theta_f = (G*i)/K;// in rad r = 1;// in m r = r * 10^3;// in mm // deflection of the galvanometer d = 2*theta_f*r;// in mm disp(d,"The deflection of the galvanometer in mm is"); i = i * 10^6;// in µA // Current sensitivity Si = d/i;// in mm/µA disp(Si,"The current sensitivity in mm/µA is"); // Voltage sensitivity Sv = d/(i*R);// in mm/µV disp(Sv,"The voltage sensitivity in mm/µV is"); So = d/(i*10^-6*10^6);//megaohm sensitivity in Mohm/mm disp(So,"The megaohm sensitivity in Mohm/mm is"); omega_d = (sqrt((4*J*K) - ((D)^2)))/(2*J);// in rad/sec f_d = omega_d/(2*%pi);//frequency of damped oscillation in Hz disp(f_d,"The frequency of damped oscillation in Hz is"); omega_n = sqrt(K/J); // period of free oscillation To = (2*%pi)/omega_n;// in sec disp(To,"The period of free oscillation in sec is"); Dc = 2*sqrt( J*K ); // The relative damping Epsilon = D/Dc; disp(Epsilon,"The relative damping is"); // The first maximum deflection theta1 = theta_f * ( 1 + (%e^(-%pi*Epsilon)/(sqrt(1 - ((Epsilon)^2)))) );// in rad theta1 = theta1*2*r;// in mm disp(theta1,"The first maximum deflection in mm is"); // The logarithmic decrement lembda = (%pi*Epsilon)/(sqrt(1 - ((Epsilon)^2))); disp(lembda,"The logarithmic decrement is");