//Ex.3.2 clc; clear; close; x1=[1 2 3 4]; //assume x2=[1 2 1 2]; //assume a=1; b=1; c=[5 5 5 5]; //assuming constant value y=x1+c; //y(n)=x(n)+c //Test for homogeneity k=2; hom=0; for n=1: length (x1) if (k*y(n)==k*x1(n)+c(n)) hom=hom+1; end end //Test for additivity for n =1: length (x1) x3(n)=a*x1(n)+b*x2(n) end for n =1: length (x1) y1(n)=x1(n)+c(n); y2(n)=x2(n)+c(n); y3(n)=x3(n)+c(n); end for n =1: length (y1) z(n)=a*y1(n)+b*y2(n); end count =0; for n =1: length (y1) if(y3(n)==z(n)) count = count +1; end end if( count == length (y3) & (hom==length(y))) disp ( 'It satisfies the homogeneity and additivity principle' ); disp ( 'THE GIVEN SYSTEM IS LINEAR ' ); else disp ( 'It does not satisfy the homogeneity and additivity principle' ); disp ( 'THE GIVEN SYSTEM IS NON LINEAR ' );