//scilab 5.4.1 //Windows 7 operating system //chapter 8 Junction Transistors:Biasing and Amplification clc clear //For a CE transistor amplifier circuit with self-bias f=1000//f=frequency in Hz AV=-200//AV=voltage gain hfe=100//hfe=current gain hie=1//hie=input impedance in kilo ohms Pcmax=75*10^-3//Pcmax=maximum collector dissipation in Watt //hre and hoe are to be neglected VCC=12//VCC=collector supply voltage //AV=-(hfe*RL)/hie where RL is the load resistance RL=-(AV*hie)/hfe format("v",5) disp("The designed values of the components of a CE transistor amplifier are:") disp("kilo ohm",RL,"The load resistance RL is =") //For the amplifier to be linear,the quiescent point is chosen to lie in the middle of the DC load line VCG=VCC/2 //VCG=DC collector to ground voltage //VCC=(IC*RL)+VCG where IC=DC collector current IC=(VCC-VCG)/RL format("v",5) disp("mA",IC,"Ihe DC collector current is =") Pr=(IC^2)*RL//Pr=power dissipation in RL //Pc=the collector dissipation is set at 14.5 mW which is below the value of Pcmax //Pc=VCE*IC Pc=14.5 VCE=Pc/IC//VCE=collector-to-emitter voltage drop format("v",4) VEG=VCG-VCE//VEG=DC voltage drop across resistance Re IE=IC//IE=emitter current Re=VEG/(IC) disp("ohm",Re*1000,"The resistance Re is =")//Re is converted in terms of ohms Pe=(IC^2)*Re//Pe=power dissipation in Re VBE=0.7//VBE=assumed DC base-to-emitter voltage drop VBG=VBE+(IE*Re)//VBG=DC voltage across resistance R2 //VT=(VCC*R2)/(R1+R2) where VT=Thevenin equivalent voltage //RT=(R1*R2)/(R1+R2).............(1) where RT=Thevenin equivalent resistance //VBG=VT-(IB*RT) //VBG=((VCC*R2)/(R1+R2))-(IB*((R1*R2)/(R1+R2)))..................(2) //Let (R2/(R1+R2))=x ..............(3) x=VBG/VCC//neglecting the second term on the right hand side of equation (2) a=(1-x)/x //a=R1/R2 //S=((1+b)*(1+RT/Re))/(1+b+(RT/Re)) where S=stability factor and b=current gain=hfe //b>>1 hence S=(hfe*(1+RT/Re))/(1+b+(RT/Re)) //For good stability we choose S=hfe/20 RT=((hfe-20)/19)*Re R1=RT/x//from equation (1) and (3) format("v",5) disp("kilo ohm",R1,"The resistance R1 is=") R2=R1/5.33 format("v",4) disp("kilo ohm",R2,"The resistance R2 is =") Pr2=(VBG^2)/R2//Pr2=power dissipation in R2 Pr1=((VCC-VBG)^2)/R1 //Pr1=power dissipation in R1 Ce=1/(2*%pi*f*((Re*1000)/10))//Ce=bypass capacitor format("v",2) disp("micro farad",Ce/10^-6,"The bypass capacitance Ce is =")//Ce is converted in terms of micro farad C1=2/(2*%pi*f*100)//C1=coupling capacitor format("v",4) disp("micro farad",C1/10^-6,"The coupling capacitance C1 is =")//C1 is converted in terms of micro farad Rin=20*1000//Rin=assumed input impedance in ohms C2=1/(2*%pi*f*0.1*Rin)//C2=coupling capacitor format("v",4) disp("micro farad",C2/10^-6,"The coupling capacitance C2 is =")//C2 is converted in terms of micro farad